详情

功率放大器在海底管道悬跨振动检测试验中的应用

来源:化工仪器网2022/7/1 9:02:00185
导读:

 

实验名称:海底管道悬跨振动检测试验

研究方向:管道悬跨诊断

实验内容:利用信号源、功率放大器、激振器激励管道振动,模拟海底管道在洋流的冲刷作用下产生振动;利用管道内检测器检测振动。

测试目的:使管道产生类似于洋流激励的振动,利用内检测器检测振动。

测试设备:信号源、功率放大器ATA-3080、激振器、管道

放大器型号:ATA-3080

实验过程:

  1. 在管道的一端利用鼓风机向管内吹气,推动管内球向前滚动。为了能使球像在现场管道里那样处于匀速滚动的稳态,需要控制风力的大小。
  2. 通过连续调节鼓风机的供电电压实现对风速的连续调节。考虑到球从静止到速度稳定是一个加速过程,在激振管道的上游又连接了一根缓冲管,使球在进入激振管道前就完成加速并达到恒速滚动的稳态。
  3. 两节管道之间采用柔性橡胶连接,使缓冲管道不干扰激振管道的振动。激振管道两端采取固定支撑,来模拟实际的悬跨海底管道。

  1. 电脑控制数据采集卡产生激励信号,经过功率放大器放大后,输送给激振器,激励管道沿竖直方向振动。
  2. 考虑到在海底,洋流平行于海床,而涡激振动方向又与洋流方向垂直,所以给管道施加的激励是竖直方向的。激光位移传感器实时测量管道的振动位移,作为参考。
  3. 采用3D打印技术制作了50mm直径的光敏树脂球壳,内部设置了固定三轴加速度计的结构,加速度计采用小型锂电池供电。
  4. 在球内部添加了两条钢柱来调节它的质量分布,使球稳定地围绕转动惯量大的轴旋转。检测完毕后,取出球与电脑相连接,下载数据,通过离线处理加速度信号识别出管道振动。

测试结果:

  1. 下图(e)是原始加速度信号三分量的平方和,图(f)是去除了直流偏置的加速度三分量的平方和。

  1. 可以看到,去除各个分量直流以前,a^2包含很强的代表球转动的低频信息,且还包含一些其他高频信息。去除各个分量直流以后,a^2变成a~^2,相当于把向心加速度去除了,与f1相关的低频信息消失了,a~^2包含很强的代表管道振动的高频信息,这有利于识别管道的振动。
  2. 当管道振幅较大时,a^2频域包含5个峰。其中代表球的滚动频率f1的峰,很容易利用其他管段的数据识别,因为其他不振动管段里球测得的加速度信号就只有f1成分。另外4个峰,对应f2,2 f2,f2+ f1,f2- f1,后三个的幅值跟很多因素有关,有时还会接近甚至超过f2的幅值,无法判断那个是f2的峰。通过对加速度各个分量进行去直流处理,获得a~^2,可以削弱f2+ f1和f2- f1的幅值,只保留f2和2 f2峰。
  3. 如右下图所示的频域曲线,红色曲线是利用去除了直流的加速度分量计算的,蓝色曲线是利用原始加速度分量计算的。显然,通过去直流,与f1相关的峰值都有了明显的减弱,而去直流前后f2和2 f2几乎没有任何改变。可以轻易地确定f2和2f2对应的峰值,然后可以得到f2的值。如果管道振幅足够大,2f2也会比较明显,可以通过二倍频的关系进一步确认f2。

放大器在该实验中发挥的效能:放大激励信号,输入给激振器。

选择该放大器的原因:功率大、带宽够。

版权与免责声明:凡本网注明“来源:全球工厂网”的所有作品,均为浙江兴旺宝明通网络有限公司-全球工厂网合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:全球工厂网”。违反上述声明者,本网将追究其相关法律责任。 本网转载并注明自其它来源(非全球工厂网)的作品,目的在于传递更多信息,并不代表本网赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品第一来源,并自负版权等法律责任。 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

展开全部
相关技术