详情

接触角测量仪的核心—接触角的计算方法1

来源:化工仪器网2022/7/27 12:56:00261
导读:
   在材料表面上附着的液滴会呈现出一定形状,这个形状取决于固体-液体-气体界面之间的张力平衡。1805年Young首先提出了一个方程描述这个平衡态,从此接触角测量就成为评价液体对固体表面润湿的经典方法。
  20世界末期随着电脑计算速度和高分辨率相机性能的不断提高,光学接触角测量仪器完成了自动化和商品化。从此测量接触角成为操作方便结果可靠的实验手段。但是有不少用户对于接触角测量的方法仍存在误解,认为接触角测量仪不过是自动化的数码量角器而已。
  实际上接触角值是通过测量液滴轮廓在三相接触点处的一阶导数即切线的斜率而得到的,而三相接触点附近的液滴轮廓会受到各种光线的干扰,或者由于材料不够平整遮掩住三相接触点附近的轮廓。所以光学法接触角测量并不是对数码照片上的某个夹角直接测量而得到的,而是使用不同的数学模型拟合液滴轮廓,再通过计算得到的。
  较为简单的模型就是球模型。球模型是把液滴的形状假定为球体的一部分,那么其截面形状就是圆形的一部分。在此圆形的三相接触点处求解一阶导数即可计算出接触角数值。球模型的缺陷在于没有考虑重力对液滴形状的影响。严格来讲在固体表面上任何液滴在重力作用下形状都会偏离球形,体积越大偏离越多,密度越大偏离越多,接触角数值越大偏离越多。通常情况下如果液滴体积小于3微升,接触角值小于30°,才可以考虑使用球模型计算。目前常见的Circle法,Width/Height法,θ/2法都是基于球模型的计算方法。
  二次曲线模型是考虑到在重力作用下液滴会被压扁,所以采用了包括圆方程、椭圆方程在内的广义的二次曲线模型来拟合液滴中心截面的轮廓。此方法通用性较广,测量的理想范围从10°左右到130°左右,测量精度较高。
  Laplace-Young模型是把重力和密度对液滴形状的影响定量计算在内的准确算法。为了求解此方程需要引入中心轴对称的假设。如果液滴是中心轴对称的,Laplace-Young模型是此时的准确算法。如果液滴的接触角在100°以上,那么它会比较符合轴对称的前提。接触角越大则轴对称性越好,计算得到的接触角数值越准确。当接触角大于150°时,Laplace-Young模型甚至是wei一正确的算法。通常接触角大于60°时就可以考虑选择此算法,接触角值大于120°时,测量的准确性会相当理想。
本文内容得到所有者的许可)
 

接触角测量仪

版权与免责声明:凡本网注明“来源:全球工厂网”的所有作品,均为浙江兴旺宝明通网络有限公司-全球工厂网合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:全球工厂网”。违反上述声明者,本网将追究其相关法律责任。 本网转载并注明自其它来源(非全球工厂网)的作品,目的在于传递更多信息,并不代表本网赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品第一来源,并自负版权等法律责任。 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

展开全部
相关技术